
Some Usability Considerations in Access Control Systems

[Position Paper]

Elisa Bertino
CERIAS and Dep. of CS

Purdue University
West Lafayette, IN, USA

bertino@cs.purdue.edu

Seraphin Calo
IBM

T.J. Watson Research Center
Hawthorne, NY, USA

scalo@us.ibm.com

Hong Chen
CERIAS and Dep. of CS

Purdue University
West Lafayette, IN, USA

chen131@cs.purdue.edu
Ninghui Li

CERIAS and Dep. of CS
Purdue University

West Lafayette, IN, USA
ninghui@cs.purdue.edu

Tiancheng Li
CERIAS and Dep. of CS

Purdue University
West Lafayette, IN, USA
li83@cs.purdue.edu

Jorge Lobo
IBM

T.J. Watson Research Center
Hawthorne, NY, USA
lobo@us.ibm.com

Ian Molloy
CERIAS and Dep. of CS

Purdue University
West Lafayette, IN, USA

imolloy@cs.purdue.edu

Qihua Wang
CERIAS and Dep. of CS

Purdue University
West Lafayette, IN, USA

wangq@cs.purdue.edu

ABSTRACT
Role-based access control is one the most popular models
adopted in commercial security and identity management
products. However creating and maintaining such systems
have been proven to be not an easy task. In this paper we re-
view several issues that affect the usability of RBAC systems
and discuss the advantages and limitations of role mining, a
popular topic in the research community, as mechanism to
simplify usability.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection—Ac-
cess Control ; D.2.2 [Design Tools and Techniques]: User
Interfaces

General Terms
Security, Management

Keywords
RBAC, role engineering, role mining

1. INTRODUCTION
Grouping users is a methodology that emerges naturally

in access control management. The idea is that instead of

Copyright is held by the author/owner. Permission to make digital or hard
copies of all or part of this work for personal or classroom use is granted
without fee.
Symposium on Usable Privacy and Security (SOUPS) 2008, July 23–25,
2008, Pittsburgh, PA USA
.

Figure 1: Role-based Access Control (RBAC)
Model.

assigning directly privileges to users or user accounts an ad-
ministrator creates groups of users that may need similar
privileges, assigns the privileges to the groups and group
membership will determine which privileges get assigned to
the user. Thus, with a single assignment of a privilege to a
group or a revocation of the privilege from the group all
members of the group are affected. This concept forms
the backbone behind the Role-based Access Control Model
(RBAC), formalized first in [3] and recently standardized
by ANCI/INCITS [1]. The basic RBAC model is depicted
in the figure 1. Groups in RBAC are called roles. The ar-
rows depict many-to-many relationships. The RBAC model
is more than just grouping of users into roles. When a user
wants to access a resource the user needs to create a session
and activate a role that let them access the resource through
the session. In RBAC the administrator can impose con-
straints on the roles that can simultaneously become active
in the same session. This allows RBAC systems to model
semantic constraints such separation of duty or Chine walls
[9] which are fairly common requirements in access control.
However in this article we will ignore anything related to
session management and we will limit our discussion to the
management of roles (i.e. groups of users with the same



access permissions).
Role-based access control (RBAC) is widely used in en-

terprise security management and enterprise identity man-
agement products. Take one of the popular management
products, IBM Tivoli Identity Manager (ITIM), for exam-
ple. ITIM allows centralized management of user accounts
on a variety of systems and applications. In ITIM, accounts
cannot be assigned to users directly; they must be provi-
sioned to roles and roles are assigned to users. In a mid size
enterprise with a few thousands employees we can easy find
hundreds of roles and resources, many times roles match-
ing the organizational structure of the enterprise. In large
enterprises we find thousands of roles and resources. IBM
marketing research has shown that RBAC systems “are cre-
ating both a valid Return On Investment (ROI) and driving
better control over the assets of an organization” [2]. At-
tracted by strong ROI, more and more companies are driven
to migrate to RBAC. However, for most companies, creating
an RBAC configuration from scratch is not easy. Accord-
ing to a study by NIST [4], building an RBAC system is
the costliest part of migrating to an RBAC implementation.
Any improvement on methodology that can reduce the cost
of RBAC system creation will further improve the ROI of
RBAC and will accelerate RBAC’s adoption in practice.

There are two general approaches to construct an RBAC
system: the top-down approach and the bottom-up approach.
In the top-down approach, people perform a detailed analy-
sis of business processes and derive roles from such analysis.
Since such a top-down analysis is human-intensive, it is be-
lieved to be slow and expensive. To overcome the drawback
of top-down approaches, researchers have proposed to use
data mining techniques to discover roles from existing sys-
tem configuration data. Such a bottom-up approach is called
role mining. Role mining can potentially accelerate RBAC
system construction to a great extent, and it has raised sig-
nificant interests in the research community [5, 8, 11, 10,
12].

However, the practical value of role mining is a controver-
sial topic. The major argument against role mining is that
existing role mining approaches cannot discover roles with
real-world meanings. Roles that are discovered by existing
role mining approaches are no more than a set of permis-
sions and it is unclear whether such roles correspond to any
real-world concepts, such as a job position or a work loca-
tion. Without semantic meanings, such roles may be hard
to use and maintain in practice. In addition, role mining
in its current conception does not help in the day to day
management of RBAC systems. System managers need to
add, remove and modify users, roles and resources on reg-
ular basis, but role mining techniques have been developed
assuming a static environment.

While some may believe that the top-down approach is
more desirable despite of higher cost, because it produces
higher quality results, the configuration data we gathered
from ITIM shows that this is not always the case. These
pieces of configuration data reveal the role-permission as-
signment of a number of real-world organizations that use
ITIM as identity management solution. Some of these con-
figurations are poorly designed. In an extreme case, a com-
pany created one role (and occasionally two roles) for each of
the 486 permissions in the system, which results in 489 roles
in total. With such an almost one-to-one correspondence
between roles and permissions, the company can hardly en-

joy the advantages of RBAC. Some other configurations are
unnecessarily complicated due to redundancies. Some roles
and permission assignments can be removed from the con-
figuration without affecting the privileges of anyone.

There are several reasons that top-down approaches may
sometimes fail to produce“good”RBAC systems in practice.
First, building an RBAC system is challenging. It is com-
mon for people to adopt some trivial design, such as blindly
creating one role for each job position of the organization
regardless whether these job positions share the same set
of permissions. Second, some system designers have been
deeply influenced by Discretionary Access Control (DAC).
When they are asked to construct an RBAC system, they
tend to do it in a DAC manner, such as creating a role for
each permission, thinking that the most flexibility is pro-
vided in that way. This is also affected by the fact that
RBAC systems evolve all the time. Administrators address
requests for access rights on demand and it is easier to cre-
ate a new role each time since there are no mechanisms to
visualize the current state of the system to find out if and
how the new request may fit into the current RBAC sys-
tem state. Third, many organizations do not have expertise
in designing RBAC systems. They do not know what is a
“good” RBAC system. Even though some companies, such
as Eurekify, offer consulting and technical services on role
management, such services are costly, and some companies
consider their internal structure confidential and are reluc-
tant to reveal this information to a third party. In fact, there
is no standard or accepted metrics to evaluate the goodness
of an RBAC system with respect management and usability.

In general, the data we acquired demonstrates that some
organizations are having difficulties in designing an efficient
and easy-to-manage RBAC systems by themselves using top-
down approaches. Automatic tools that can help with RBAC
system design have great commercial values, as more and
more companies are considering RBAC implementation.

We believe that effective role mining tools will provide
valuable help to role engineering and is complementary to
the top-down approach of role engineering. For companies
that do not have sufficient RBAC expertise, tools provide
inexpensive help (comparing to hiring external consultants)
and avoid having to leak sensitive organization information
to outsiders.

To design a tool that can help, we need to make good
use of all the information that is available. Those compa-
nies that are trying to migrate to RBAC have an access
control system that is running fine for their business. Ac-
cess control information can be gathered from this system
and use data mining techniques, i.e. role mining, to help
create an RBAC system from current access control config-
urations. However, as we have pointed out earlier, existing
role mining approaches fail to discover roles with real-world
meaning, which severely impairs the practical values of role
mining.

Given the great success of data mining techniques in dis-
covering meaningful information in areas such as market-
ing, forecasting and economics, it is reasonable to believe
that they can be applied to discovering meaningful roles.
We believe that there are two main reasons why existing
role mining approaches fail to discover roles with seman-
tic meanings. First, researchers have yet to find the right
data mining techniques for role mining. Techniques that
have been applied, including permission clustering and find-



ing frequent permission sets, focus on grouping permissions.
For role mining, one needs to look at grouping permissions
and users at the same time. Second, existing role mining
problem definitions use only user-permission assignment in-
formation. Since usernames and permission names are both
symbols without meanings, this limits one’s ability to iden-
tify meaningful roles. Third, there is no formal definition on
the meaning of roles to guide the design of role mining algo-
rithms. Roles discovered by existing role mining approaches
are sets of permissions. Without a formal notion of role se-
mantics, an algorithm cannot distinguish more meaningful
roles from less meaningful ones.

In general, existing work has built a foundation on role
mining by studying a simplified model of the problem. How-
ever, role mining is more than discovering frequent itemsets
from user-permission associations. A practical role mining
approach must be able to justify the meaning of the roles it
discovered. To achieve this, a formal notion of role semantics
is required and we need to introduce more information that
is widely available in practice into the role mining model.
Designing a practical role mining approach is challenging
but rewarding.

Finally, we need to reiterate that RBAC systems are not
static systems. Once an RBAC system is built and put into
use, we will need to maintain it. Overtime, an RBAC system
is updated to meet the changes on access needs in an orga-
nization. For example, new employees and new applications
(which bring in new permissions) will be added into the sys-
tem, and existing employees may leave or change positions.
When the initial RBAC configuration becomes bulky and in-
efficient after being used for a while, as a result of many up-
dates, we may reconsider its structure. How to handle access
control updates and how to improve an existing RBAC sys-
tem without performing a complete reconstruction are im-
portant research topics that will improve usability of RBAC
implementations. The study of role mining is one tool. Role
engineering, which consists of both the construction and the
maintenance of RBAC systems, is a rich area with a lot of
practical and interesting problems for researchers to explore.

In the next section we briefly review how role mining tech-
niques can be used to increase the usability of RBAC sys-
tems. In Section 3 we discuss the limitations of using only
mining techniques and point other approaches that can be
used to improve usability to complement role mining. Some
final remarks on the usability of RBAC can be found in Sec-
tion 4.

2. A ROADMAP FOR ROLE MINING
The general area of using data mining techniques for role

engineering is a very rich area. Many challenging and prac-
tical problems exist. We now give a roadmap describing
these research problems. To come up with the roadmap, we
examine two dimensions. The first dimension is what kinds
of data are available for mining, and the second dimension
is what problems one aims to solve using data mining tech-
niques.

We first look at the data dimension. At the bare min-
imum, one would have user permission information, that
is, the set of users, the set of permissions, and the binary
user-permission relation. In some cases, one also has user
attribute information, e.g., a user’ job title, the department
and location a user is in. Often times, one also has per-
mission parameter information, which is similar to user at-

tribute information, but is for permissions. For example, a
number of permissions may be about the same enterprise
information management application. Or a permission may
entail accounts on machines in one domain. In some systems,
one may have permission update information, i.e., from logs
that record how the access control state has evolved in the
past. For example, a log entry may record, at a certain time
in the past, a user was assigned a number of permissions
soon after the user was revoked certain permissions. This
piece of information would be useful for role mining because
it may reflect a job position change event. Finally, one may
have permission usage information. For example, one may
have logs showing which permissions are used and at what
time.

Now we look at the problem dimension. The first problem
that naturally comes up is to mine an RBAC state (i.e., roles,
role hierarchy, role-permission assignments, and user-role as-
signments) while optimizing some complexity measure. The
second problem is to mine roles with good semantic mean-
ings, i.e., roles that correspond to real-world concept units,
e.g. a role for lecturers in the CS department. A similar
problem is to construct parameterized roles that correspond
to categories of concepts. For example, we may create a
role for lecturers with the course name as a parameter. Fi-
nally, an access control configuration may contain noise or
outliers. For example, one may find that a permission or
a role has been assigned to all but one users in the same
department. It would be good if such outliers can be dis-
covered and reported to the administrator for investigation
to discover and correct potential authorization errors.

By combining the data dimension and the problem dimen-
sion, we have a picture on what problems can be solved (or
partially solved) with different data availability. A summary
of the discussion below is given in Table 1.
With user permission information only. With such limited
information, the only problem that could be satisfactorily
solved is creating an RBAC system that is equivalent with
the input user-permission relation while having minimum
system complexity. In the literature, people have studied
optimization on number of roles and on number of edges
(user-role assignment and permission-role assignment). In
[7], we introduced the notion of weighted structural com-
plexity as a more general system complexity measure. The
measure is a linear combination of numbers of roles, assign-
ments and role hierarchies. Furthermore, it is possible to
identify potential outliers by discovering association rules,
such as 99% of the users who have permission p1 also have
permission p2. However, without additional information,
such as user-attribute information, both false positive and
false negative ratios could be high.
With also user-attribute information. User-attribute infor-
mation is a valuable plus for mining roles with semantic
meanings. Intuitively, members of a role that corresponds to
a real-world concept should share some attributes. Also, as
mentioned earlier, user-attribute information can help better
identify outliers, because in addition to comparing permis-
sions, we can now compare attributes.
With also permission-parameter information. In many sit-
uations, permissions may be parameterized. E.g., instruc-
tor of a course, advisor of a student, permission about a
database, permission about a file, permission about a direc-
tory, etc. This information enables the discovery of param-
eterized roles, especially when combined with user-attribute



Low Good Parameterized Least Detect
Complexity Semantics Roles Privilege Outliers

User Permission Only ! Limited Limited
With User-Attribute ! ! !

With Permission-Parameter ! ! ! !
With Update Log ! ! !
With Usage Log ! ! ! !

Table 1: Summary of potential role engineering problems with different information availability. “!” indicates
that the corresponding problem is worth studying and a good solution to the problem is possible; “Limited”
indicates that a solution could be provided for the problem, but the solution may be limited without more
information; an empty cell indicates that the provided information is insufficient to study a problem.

information. Using parameterized roles could greatly reduce
the number of roles in a system.
With also permission update information. Permission up-
date information can help create roles with semantic mean-
ings. For example, those permissions that often change to-
gether are probably associated with the same real-world con-
cept. Update information also provides evidence on legacy
permissions, i.e., permissions that should have been removed
earlier.
With also permission-usage information. Permission usage
data may be helpful for finding roles as well. For instance,
permissions that are used together are likely to be associ-
ated with the same role. Also, for systems that require role
activation, it may be desirable to group commonly-used per-
missions and rarely-used permissions into separate roles so
as to enforce least privilege while minimizing the number
of roles one has to activate for daily tasks. Finally, usage
information also contributes to the detection of legacy per-
mission assignments and erroneous permission assignments.
For example, if a permission has never been used or has not
been used for a long time by a user, then the permission
assignment may be unnecessary.

3. MANAGING EVOLVING AND LEGACY
RBAC SYSTEMS

The problems discussed above are mostly related to RBAC
system creation. Another important task in role engineer-
ing is RBAC system maintenance. While the techniques for
generating an RBAC state is useful for migrating to RBAC,
it may be limited when the goal is to improve an already
existing RBAC state. In an already existing and evolving
RBAC systems one needs to deal with unnecessary user-
to-role assignments, role-to-permission assignment and the
proliferation of roles.

There are two types of sources for the unnecessary assign-
ments. Since creating an RBAC system either manually us-
ing top-down techniques or automatically using bottom-up
mining techniques is an empirical process the information is
imprecise and redundant roles can be created. The opposite
effect may also happens, that is, roles might not be created
during the initial design but they might be needed latter.
Having to deal with users with insufficient permission could
be costly. Hence sometimes permissive design with excessive
roles and roles assignments are done generating excess of as-
signments. The second source of unnecessary assignments
may come from changes in the organization. Job positions
change, task requirements change and projects finish. All
these changes leave behind legacy assignments.

Role proliferate happens for similar reasons. New jobs are

created or new projects are started and without the appro-
priate tools it is easier for the administrator to create new
roles that fit the new requirements rather than looking for
existing roles that might fit the assigments. Also employ-
ees leave and projects are completed and roles may be left
behind without users.

Given a messy RBAC state resulted from a long time of
usage, the administrator is unlikely to completely reconfig-
ure the RBAC system running a role mining tool. It is
thus useful to develop techniques that do two things: (1)
Given an RBAC state, come up with an optimization that
updates the RBAC state in some “localized way”. (2) Given
an RBAC state and a update request (e.g., changing a user’s
permission from one set to another), come up with a sug-
gested update to the RBAC system so that the accumulated
results of multiple updates will not lead to a messy state that
is difficult to “understand” and manage.

All these management tool suggestions can be considered
static tools, i.e. given a state of an RBAC system tools are
ran to improve the state. However, simplifications can also
be driven by permission usage. We can keep logs on how
users use their permission and develop tools in which deci-
sions and recommendations can be justified by usage. We
can remove permissions from permission-to-role assignments
if the permissions have been never exercised by user in that
role or merge roles whose permissions are often used in tan-
dem. Logs can also be used to clean-up roles that have been
not activated for a long time.

We are not aware of any RBAC system that supports
dynamic management tools.

4. FINAL REMARKS
The simplicity of the group and role concept makes it per-

vasive in almost any access or identity management system,
but volume, i.e. the presence of hundreds or thousands of
roles and resources, makes the management of role or group-
based systems very hard. Thus, designing domain indepen-
dent usability techniques for the management of roles and
groups for access control will have high practical impact.

Perhaps the mere simplicity of the concept has misled to
believe that groups and roles are easy to manage and very
little effort has been put into the topic. Good visualization
techniques are badly needed. Recently IBM has developed
a graph-based interface for ITIM. A partial view of such in-
terface is shown in Figure 2. This is an ECLIPSE plugin.
The left panel of the window shows the organization struc-
ture of the enterprise and can be used to define the scope of
the RBAC rules. An administrator can travel this structure
to find RBAC associations. The graph on the right shows
users towards the left, roles in the middle and permissions



Figure 2: Graphical Configuration Editor for ITIM.

on the right of the organization selected on the left. This
interface complements the original ITIM menu based inter-
face where information is shown in different panels in list
form through a web interface. The graphical interface still
has its limitation because of the limited real-state available
on the screen to show a large graph. Better graph rendering
techniques specialized for the application (i.e. access con-
trol) or other types of visualizations that are able to handle
the large volume of roles are needed.

Most likely we will need a combination of top-down and
bottom-up tools, static and dynamic but the research com-
munity needs to come up with metrics that let us evaluate
the quality of RBAC system designs. Current metrics only
measure structural complexity and it is not obvious that
simpler structures will lead to better management. New
metrics should be developed and most include how easy is
to management a system over it life time.

5. ACKNOWLEDGMENTS
This work has been partially supported by the IBM OCR

project “Privacy and Security Policy Management”.

6. REFERENCES
[1] ANSI/INCITS. Information technology - role based

access control, 2004.
[2] A. Bucker, A. Camp, R. Cohen, D. Edwards,

C. Penman, and T. Santana. Identity Management
Design Guide with IBM Tivoli Identity Manager.
IBM, 2st edition, 2003.

[3] D. Ferraiolo and R. Kuhn. Role-based access controls.
In Proceedings of 15th NIST-NCSC National
Computer Security Conference, pages 554–563, 1992.

[4] M. P. Gallaher, A. C. O’Connor, and B. Kropp. The
economic impact of role-based access control, March
2002.

[5] M. Kuhlmann, D. Shohat, and G. Schimpf. Role
mining - revealing business roles for security
administration using data mining technology. In
SACMAT, pages 179–186. ACM, 2003.

[6] V. Lotz and B. M. Thuraisingham, editors. SACMAT
2007, 12th ACM Symposium on Access Control Models
and Technologies, Sophia Antipolis, France, June
20-22, 2007, Proceedings. ACM, 2007.

[7] I. Molloy, H. Chen, T. Li, Q. Wang, N. Li, E. Bertino,
S. B. Calo, and J. Lobo. Mining roles with semantic
meanings. In I. Ray and N. Li, editors, SACMAT,
pages 21–30. ACM, 2008.

[8] J. Schlegelmilch and U. Steffens. Role mining with
orca. In E. Ferrari and G.-J. Ahn, editors, SACMAT,
pages 168–176. ACM, 2005.

[9] R. Simon and M. E. Zurko. Separation of duty in
role-based environments. In CSFW, pages 183–194.
IEEE Computer Society, 1997.

[10] J. Vaidya, V. Atluri, and Q. Guo. The role mining
problem: finding a minimal descriptive set of roles. In
Lotz and Thuraisingham [6], pages 175–184.

[11] J. Vaidya, V. Atluri, and J. Warner. Roleminer:
mining roles using subset enumeration. In A. Juels,
R. N. Wright, and S. D. C. di Vimercati, editors,
ACM Conference on Computer and Communications
Security, pages 144–153. ACM, 2006.

[12] D. Zhang, K. Ramamohanarao, and T. Ebringer. Role
engineering using graph optimisation. In Lotz and
Thuraisingham [6], pages 139–144.


